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a b s t r a c t

A detailed theoretical study of structural, electronic, elastic, thermodynamic and optical properties of

rutile type MgF2 has been carried out by means of first-principles Density Functional Theory (DFT)

calculations using plane wave pseudo-potentials within the local density approximation and generalized-

gradient approximation for the exchange and correlation functionals. The calculated ground state

properties and elastic constants agree quite well with experimental values. From the calculated elastic

constants we conclude that MgF2 is relatively hard when compared to other alkaline-earth fluorides and

ductile in nature. The thermodynamic properties such as heat capacity, entropy, free energy, phonon

density of states and Debye temperatures are calculated at various temperatures from the lattice

dynamical data obtained through the quasi-harmonic Debye model. From free energy and entropy it is

found that the system is thermodynamically stable up to 1200 K. The imaginary part of the calculated

dielectric function e2ðoÞ could reproduce the six prominent peaks which are observed in experiment.

From the calculated eðoÞ, other optical properties such as refractive index, reflectivity and electron

energy-loss spectrum are obtained up to the photon energy range of 30 eV.

& 2010 Elsevier Inc. All rights reserved.
1. Introduction

Magnesium fluoride (MgF2) is an important alkaline-earth fluoride
which has attracted much attention due to its wide range of applica-
tions as an optical material for anti-reflective (AR) coatings and light
polarizer [1]. Single crystal of MgF2 is found to be a new optical material
for semiconductor lithography because of its transmission character-
istic in vacuum ultraviolet region [2]. Magnesium fluoride also known
as sellaite, crystallizes in a tetragonal rutile type structure with space
group P42/mnm (z¼2) at ambient conditions, which is same as that of
the important stishovite materials TiO2 and SiO2. The unit cell consists
of two formula units with Mg atoms fixed at symmetry centers and the
fluorines have a positional degree of freedom x(F)¼y(F) [3]. A number
of theoretical and experimental studies such as electronic structure
[4–6], elastic constants [3,7], chemical bonding [8] have been carried
out for MgF2. An early experimental study on lattice dynamics of MgF2

was reported in which the phonon spectrum of MgF2 was measured by
inelastic neutron scattering and the values of ionic and total polariz-
abilities were obtained using shell model [9]. Using semi-empirical
two-body potential model, phonon dispersion relation of rutile MgF2

has been calculated [10]. The high pressure behavior of alkaline-earth
fluorides is of considerable interest since all the materials are ionic
ll rights reserved.

swaran).
solids [11,12]. Among the alkaline-earth fluorides, MgF2 undergoes
a series of structural phase transitions from rutile -CaCl2-PbO2-

PdF2- cotunnite under high pressures around 10–36.8 GPa with an
increase in cation coordination number from 6 to 9, similar to that of
rutile type oxides SiO2 and GeO2 [13–16]. Nishidate et al., predicted
through molecular dynamics calculation with the optimized MF-II
potential that the rutile structure of MgF2 getting transformed to cubic
fluorite structure under the application of pressure of the order of
15 GPa [17]. The optical properties of MgF2 are of much interest as the
material is a wide band gap insulator. The opticalproperties including
complex dielectric function, reflectance, refractive index and loss
spectrum were determined in vacuum and extreme ultraviolet region
through reflectance measurements [18,19]. By using combined tight
binding and pseudo-potential method the imaginary part of the dielec-
tric constant of MgF2 was reported [20]. So far the theoretical calcula-
tions including the optical properties and thermodynamic properties
like heat capacity, Debye temperature, phonon density of states of this
material have been addressed relatively with less attention. Hence in
the present study, efforts have been taken to shed more light on the
physical properties in detail by using the plane wave pseudo-potential
method. In particular we aim to obtain the elastic properties including
the second order elastic constants of single crystal and thereby deduce
the elastic moduli for polycrystalline material in order to determine the
mechanical strength and the elastic nature of MgF2. To study the nature
of bonding in the material we have used Mulliken bond population
and charge density distribution. The rest of the paper is organized as
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follows. In Section 2, we briefly describe the computational techniques
while theoretical methods used are elaborated in Section 3. The results
and discussion are presented in Section 4. Finally we end with a brief
conclusion in Section 5.
2. Computational details

First-principles calculations are performed using Cambridge
Series of Total Energy Package (CASTEP) based on density functional
theory (DFT) with Vanderbilt-type ultrasoft pseudo-potentials [21]
for electron–ion interactions to calculate the total energies and elastic
properties and norm conserving pseudo-potentials as they are well
suited for the calculation of thermodynamic properties using this
code [22]. The exchange correlation potential of Ceperley and Alder
[23] parameterized by Perdew and Zunger [24] in the local density
approximation and the scheme of Perdew–Burke–Ernzerhof (PBE)
[25] in generalized-gradient approximation for electron–electron
interactions are used. To confirm the convergence of the calculations
for the Brillouin-zone sampling, we tested the dependence of the total
energy on the plane wave cut-off energy and the k-point mesh
according to the Monkhorst-Pack grid scheme [26]. It is found that for
the cut-off energy of 400 eV and k-point set of 5�5�8, the change in
total energy is minimum, so we finally choose these cut-off energy
and k-point set for the calculation. A scissors operator of 3.97 eV in
LDA and 3.92 eV in GGA is introduced to shift the conduction levels to
be consistent with the measured value of the band gap [27,28]. The
self-consistent convergence of the total energy is 5�10�7 eV/atom
and the maximum force on the atom is found to be 10�4 eV/Å. For
the calculation of phonon density of states, the dynamical matrix
elements are calculated on the 5�5�8 grid of k-points using the
linear response approach. The linear responses to ionic displacements
and electric field are calculated within the density functional pertur-
bation theory (DFPT) as implemented in CASTEP code [29,30].
3. Theoretical methods

3.1. Thermodynamic properties

Thermodynamic properties are very important, as they play an
important role in understanding the thermal response of the solids.
According to the standard thermodynamics, if the system is held at
a fixed temperature T and pressure P then Gibb’s free energy (G) of
the system is expressed as

GðV ,P,TÞ ¼ EðVÞþPV�TS ð1Þ

where E(V) is the total energy, V is the volume and S is the entropy of
the system. Since the electronic structure calculations are performed
in the static approximation, i.e., at T¼0 K and neglecting zero-point
vibrational effects, the corresponding Gibb’s free energy in this case
becomes GstatðV ,PÞ ¼ EðVÞþPV , which is the enthalpy H of the system.
But the experimental determination of thermodynamical properties
takes place at finite T and therefore the vibrational effects should be
considered. Hence it is necessary to include these effects in order to
compare theoretical predictions with the experimental measure-
ments to explore the thermodynamic properties. So we have chosen
the quasi-harmonic Debye model [31] and according to this model the
non-equilibrium Gibb’s free energy function is given by

G�ðV ,P,TÞ ¼ EðVÞþPVþAvibðYðVÞ,TÞ ð2Þ

whereYðVÞ is the Debye temperature, PV corresponds to the constant
hydrostatic pressure condition and Avib is the vibrational Helmholtz
free energy and the corresponding expressions can be found else-
where in [31]. The thermodynamic properties such as heat capacity
(Cv), entropy (Sv) and the vibrational internal energy (Uvib) can be
calculated using the following relations:

CV ¼ 3nk 4D
Y
T
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3.2. Optical properties

The optical properties of matter can be described by means of
the transverse dielectric function eðq,oÞwhere q is the momentum
transfer in the photon–electron interaction and o is the energy
transfer. In the present study we have used electric-dipole approx-
imation for the calculations, according to which q¼0, i.e., the
momentum transfer from the initial state to the final state is
neglected. In general there are two contributions to eðoÞ namely
intraband and interband transitions. The contribution from intra-
band transitions is important only for the case of metals. The
interband transitions can further be split into direct and indirect
transitions. The indirect interband transitions involve scattering of
phonons. But the indirect transitions give only a small contribution
to eðoÞ in comparison to the direct transitions [32], so we have
neglected them in our calculations. The direct interband contribu-
tion to the absorptive or imaginary part of the dielectric function
eðoÞ in the random phase approximation [33] without allowance
for local field effects is calculated by summing all the possible
transitions from the occupied and unoccupied states with fixed
k-vector over the Brillouin zone, weighted with the appropriate
transition matrix element giving the probability for the transi-
tion by

e2ðoÞ ¼
Ve2

2p‘m2o2

Z
d3k

X
j/cC jpjcVSj

2dðEC�EV�‘oÞ ð6Þ

here cc and cv are the wave functions in the conduction and
valence bands, p is the momentum operator, o is the photon
frequency, and ‘ is Planck’s constant. The dispersive or real part of
the dielectric function eðoÞ can be extracted from the Kramers–
Kronig relation

e1ðoÞ ¼ 1þ
2

p P

Z 1
0

e2ðouÞou dou

ðouÞ
2
�ðoÞ2

ð7Þ

where ‘P’ is the principle value of the integral. In order to calculate
e1ðoÞ using Kramers–Kronig transformation, it is necessary to
evaluate the absorption spectrum to high energies in order to
achieve a converged result for the dispersion. So we have calculated
e2ðoÞ up to 30 eV above the Fermi level. The knowledge of both the
real and imaginary parts of the dielectric function allows the
calculation of the important optical properties. In this paper, we
present and analyze the reflectivity RðoÞ, energy-loss spectrum
LðoÞ and the refractive index nðoÞ of tetragonal crystalline MgF2.
The reflectivity can be derived from Fresnel’s formula for normal
incidence assuming an orientation of the crystal surface parallel to
the optical axes using the relation

RðoÞ ¼ ð
ffiffiffi
e
p
ðoÞ�1Þ

ð
ffiffiffi
e
p
ðoÞþ1Þ

j

2
					 ð8Þ

The energy-loss spectrum LðoÞ can be calculated using the follow-
ing expression:

LðoÞ ¼ e2ðoÞ
e1ðoÞ2þe2ðoÞ2

ð9Þ
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Refractive index nðo) can be obtained using

nðoÞ ¼ 1ffiffiffi
2
p
½
ffiffi
ð

p
e1ðoÞ2þe2ðoÞ2Þþe1ðoÞ��1=2

ð10Þ
4. Results and discussion

As a first step, we performed full structural optimization of MgF2

for the unit cell and atomic positions and the crystal structure of
MgF2 is shown in Fig. 1. The ground state properties such as lattice
constants, position of fluorine and bulk modulus are calculated and
given in Table 1. The results obtained are in close agreement with
the experimental values [13,34] and other theoretical calculations
[14,16]. It is very well known that the LDA calculations generally
underestimate the lattice constants by about 1–2% and over-
estimate the bulk modulus (10–12%) [35,36], whereas the GGA
calculations overestimate the lattice constants (1–2%) and under-
estimate the bulk modulus (10–12%) [37]. We also observe a similar
trend in our present calculations. Since the optical spectra are
calculated from interband transitions which occur between valence
and conduction bands, which in turn depends on the band gap, it
would be necessary to know the electronic band structure and the
Fig. 1. Crystal structure of MgF2.

Table 1
Lattice constants, position of fluorine, bulk modulus B0 and band gap of MgF2

together with the experimental and other theoretical values. Values in parenthesis

indicate with scissor correction.

Parameter LDAa GGAa TB-LMTOb VASPc Exptd Expte

a (Å) 4.6028 4.7345 4.572 4.6912 4.625 4.621

c (Å) 3.0369 3.1238 3.017 3.096 3.052 3.052

c/a 0.6598 0.6598 0.6599 0.66 0.6599 0.6604

x(F) 0.3026 0.3035 0.3043 0.3034 0.3027 0.3029

B0 (GPa) 111.47 91.80 101 97 10173 –

Eg (eV) 6.83(10.8) 6.88(10.8) 6.4 – 10.8f –

a Present.
b LDA results from Ref. [14].
c GGA results from Ref. [16].
d Ref. [13].
e Ref. [34].
f Ref. [38].
magnitude of the band gap. In the present case the electronic band
structure of MgF2 is obtained and it is observed that the top of the
valence band and bottom of the conduction band both occurs at the
G�point, and they are separated by a gap of 6.83 eV in LDA and
6.88 eV in GGA. Therefore this is a direct band gap insulator and the
magnitude of the calculated gap agrees quite well with other reported
theoretical values [14]. We should note here that the nature of band
gap in alkaline-earth fluorides CaF2 (7.24 eV), SrF2 (7.5 eV) [11] and
BaF2 (7.03 eV) [12] is found to be indirect, whereas in the case of MgF2

it is direct. Our calculated gap of MgF2 is much smaller than the
experimentally reported value of 10.8 eV [38], which is due to the
inherent limitation in exchange-correlation potential of LDA and GGA,
and is quite common in all DFT calculations [28,35,39]. In order to
obtain accurate optical transitions there is a need to reproduce the
experimental band gap and this problem can be resolved by using
scissor operator [40] which can produce a rigid shift of the unoccupied
conduction band levels with respect to the completely occupied
valence band level so that the experimentally reported band gap can
be reproduced and the accurate optical transitions can be identified.
So we have used scissor operator of 3.97 eV in LDA and 3.92 eV in
GGA, which shifts the gap to 10.8 eV both in LDA and GGA, which is
the experimental value. The scissor operator corrected band structure
and density of states of MgF2 is shown in Figs. 2 and 3, respectively.
However one should note that scissor operator approximation is an ad
hoc approximation and one needs a precise GW approximation to get
the correct band structure and optical properties [41–43].
4.1. Chemical bonding

The nature of chemical bonding is evaluated by using Mulliken
bond population analysis [44]. Bond population is an important
parameter which suggests the nature of bonding between two
atoms in a molecule. A positive value of the population implies that
the two atoms are in bonding, whereas a negative value implies the
anti-bonding. For MgF2, the average Mg-F bond population is found
to be �1.72. A charge of�0:8jej on F atom and þ1:62jej on Mg atom
are obtained. These results indicate a strong ionic bonding in MgF2.
It is well known that the ionic bond results from the electrostatic
interaction of oppositely charged ions. To emphasize the co-
ordination of Mg cation and F anion, we have plotted the electron
charge density distribution of MgF2 in (001) plane as shown in
Fig. 4. The electron configuration of the neutral atoms of Mg and F
are Mg: 1s22s22p63s2, F: 1s22s22p5 respectively. The doubly charged
Fig. 2. Band structure of MgF2 within LDA at theoretical equilibrium volume. A

scissor operator correction of 3.97 eV is applied to shift the conduction band.



Fig. 4. Charge density distribution in MgF2 in (001) plane within LDA. The side bar

indicates the color range in the distribution.

Fig. 3. Total and partial density of states of MgF2 within LDA at theoretical

equilibrium volume with a scissor operator shift.

Table 3
Polycrystaline aggregate properties of bulk moduli (BVRH, in GPa), compressibility

(bVRH , in GPa�1), shear moduli (GVRH, in GPa), Young’s moduli (EVRH, in GPa) and

Poisson’s ratio (s) in Voigt–Reuss–Hill approximation.

MgF2 BVRH bVRH GVRH EVRH s

LDA 111.37 0.0089 50.65 131.94 0.3

GGA 89.15 0.0112 47.35 120.68 0.28

Table 2
Single-crystal elastic constants (Cij in GPa), bulk moduli (B in GPa), shear moduli

(G in GPa) and anisotropy factor (A) of MgF2 together with the experimental and

other theoretical values.

Parameter LDA GGA HF-LCAOa VASP (GGA)b Exptc Exptd

C11 145.68 122.76 155.3 130.80 140.81 142.7

C12 101.94 75.73 90.7 83.80 90.03 92.2

C13 75.63 57.74 55.6 59.25 64.17 64.1

C33 208.21 178.99 219.3 193.60 204.90 204

C44 49.64 47.74 68.2 52.70 56.64 56.7

C66 102.52 83.05 104.1 89.30 95.60 93.5

BV 111.7 89.65 – – –

BR 110.96 88.66 – – –

GV 56.78 51.25 – – –

GR 44.52 43.46 – – –

A 2.26 2.03 – – –

AB(%) 0.36 0.55 – – –

AG(%) 12.1 8.22 – – –

a Ref. [3].
b Ref. [16].
c Ref. [46].
d Ref. [47].
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ion of Mg and singly charged ion of F have the configurations Mg2 +:
1s22s22p6 and F�: 1s22s22p6, similar to that of neon. As the inert gas
atoms have closed shells, the charge distributions are spherically
symmetric. Therefore we can expect that the charge distribution on
each ion in MgF2 crystal will have approximately spherical
symmetry with some distortion near the region of contact with
the neighboring ions and we can clearly observe this behavior in
the charge density plot shown in Fig. 4.

4.2. Elastic properties

The elastic properties include elastic constants, Young’s mod-
ulus, bulk modulus, shear modulus and Poisson’s ratio provide
information about the mechanical stability, stiffness and mechan-
ical nature of materials to the applied stress. In particular they
provide a link between the mechanical and dynamical behavior of
solids. In the present study we have calculated the elastic constants
for single crystal as well as polycrystalline MgF2 in both LDA and
GGA. Due to the tetragonal symmetry MgF2 has six independent
elastic constants: C11, C12, C13, C33, C44, C66. To calculate the elastic
constants we have used the volume-conserving strains technique
[45]. The obtained elastic constants are tabulated in Table 2, and are in
good agreement with the experimental values and other theoretical
results. The mechanical stability condition, which reflects the struc-
tural stability of materials at specific deformations, is very important.
Born and Huang systematically investigated the lattice mechanical
stability by expanding the internal energy of the crystal in the range of
strains, in terms of elastic constants Cij and they found that the
criterion for a mechanically stable lattice requires the elastic energy
density to be a positive definite quadratic function of strain [48]. For
MgF2 it is found that all the elastic constants are positive and obey
Born’s criteria for mechanical stability of tetragonal crystals given by
C1140, C3340,C4440, C6640, ðC11�C12Þ40,ðC11þC33�2C13Þ40
and ½2ðC11þC12ÞþC33þ4C13�40. The anisotropy factor A¼ 2C44=

ðC112C12Þ of MgF2 is 2.26 in LDA and 2.03 in GGA. This reveals that
MgF2 is anisotropic, because the value A¼1 represents complete
elastic isotropy, while values smaller or greater than 1 measures the
degree of elastic anisotropy. The obtained elastic constants allow us to
obtain the macroscopic mechanical properties of MgF2, namely bulk
moduli (B) and shear moduli (G) via two approximations: Voigt (V)
and Reuss (R) in the following forms:

BV ¼
1
9½2ðC11þC12ÞþC33þ4C13� ð11Þ

GV ¼
1

30ðLþ3C11�3C12þ12C44þ6C66Þ ð12Þ

BR ¼
C2

L
, GR ¼ 15 18

BV

C2
þ

6

ðC11�C12Þ
þ

6

C44
þ

3

C66

� ��1

ð13Þ

where L¼C11+C12+2C33�4C13 and C2
¼(C11+C12)C33�2C2

13. The
results obtained are summarized in Table 3. By using the predicted



K. Ramesh Babu et al. / Journal of Solid State Chemistry 184 (2011) 343–350 347
Cij’s of MgF2, we find the polycrystalline aggregate properties such as
bulk moduli (B), which measures the resistance of a material against
volume change under hydrostatic pressure, and shear modulus (G),
which represents the resistance to shape change caused by shearing
force in terms of Voigt–Reuss–Hill approach [49]. In this approach
according to Hill, the Voigt and Reuss averages are limits and the actual
effective moduli for polycrystals can be approximated by the arith-
metic mean of these two limits. Then, one can calculate the average
compressibility (bVRH ¼ 1=BVRHÞ, Young’s modulus (YVRH ¼9GVRHBVRH/
(3BVRH + GVRH)), which reflects the resistance of material against uni-
axial tensions and also Poisson’s ratio s¼ 1/2[(BVRH�(2/3)GVRH/(BVRH

+ (1/3)GVRH)], which generally indicates the stability of the crystal
against shear and takes the value between �1 and 0.5 which are
the lower and upper bounds. The lower bound indicates where the
material does not change its shape and the upper bound resembles the
case where the volume remains unchanged. All these parameters are
listed in Table 3. From our results we can see that for polycrystalline
MgF2, BVRH 4GVRH in both LDA and GGA which implies that the
parameter limiting the mechanical stability of MgF2 is the shear
modulus GVRH. On the other hand the bulk moduli for MgF2 is large
(4100 GPa) and also for example greater than the bulk moduli for
other alkaline-earth fluorides; CaF2 (84.1 GPa) [50], SrF2 (69 GPa) [51],
BaF2 (57 GPa) [52]. Thus, when compared with other alkaline-earth
fluorides MgF2 is a relatively hard material. To know the ductile–brittle
nature of MgF2 we have used Pugh’s criterion [53], according to which
the critical value of B/G ratio that separates the ductile and brittle
nature of a material is found to be 1.75. In our case this value is found to
be 2.19 in LDA and 1.88 in GGA, respectively. This means that MgF2 is a
ductile material and this behavior can be connected to the elastic
anisotropy which is an important factor in estimating the possibility of
inducing microcracks in the material. We have estimated the elastic
anisotropy (AB, in percent) in terms of compressibility and shear for
polycrystalline materials as AB¼(BV�BR)/(BV+BR) and AG¼(GV�GR)/
(GV+GR) [54]. The farther values of AB and AG from zero indicate larger
anisotropy of material. For isotropic materials AB¼AG¼0. The calcu-
lated values for MgF2 are: AB (0.363% in LDA and 0.55% in GGA) and AG

(12.1% in LDA and 8.22% in GGA), also shown in Table 2, indicate that
the material is anisotropic in nature. The values of the Poisson’s ratios
for covalent materials are small (s¼ 0:1), whereas for ionic materials a
typical value ofs is 0.25 [55]. In our case the value ofs for MgF2 is about
0.304 in LDA and 0.276 in GGA, i.e., a considerable ionic contribution to
intra-atomic bonding can be assumed. For covalent and ionic materials,
the typical relations between bulk and shear moduli are G� 1:1B and
G� 0:6B, respectively [55]. In our case the calculated values of MgF2

are GVRH¼0.45BVRH in LDA and GVRH¼0.53BVRH in GGA, which also
indicates that the ionic bonding is predominant in MgF2. This may also
be clearly seen on the electron density map for MgF2 shown in Fig. 4.
4.3. Thermodynamic properties

Free energy, heat capacity, entropy and phonon density of states
are important thermodynamic properties of solids. Following the
theory of quasi-harmonic Debye model outlined in Section 3.1, in
which the phonons are harmonic but they are volume dependent,
we have calculated the thermodynamic properties of MgF2. The
total phonon density of states of MgF2 are obtained and shown in
Fig. 5(a). From the phonon density of states it can be seen that the
high frequency modes are dominated by the F atoms due to their
low masses, whereas the low frequency modes are essentially
dominated by Mg atoms. We find that the calculated phonon
density of states spectra is in good agreement with the earlier
reported spectra in [10]. The calculated total phonon DOS is used to
evaluate the temperature dependence of thermodynamic proper-
ties of MgF2. Usually, the quasi-harmonic approximation is not
valid when the temperature is close to the melting point of the
lattice [56]. So we have used a truncated temperature range from 0
to 1200 K which is below the melting point of MgF2 (1534 K). The
contributions from the lattice vibrations to the heat capacity are
shown in Fig. 5(b). The obtained temperature dependent heat
capacity follows the Debye model and approaches the Debye T3 law
at low temperatures (o50 K) and reaches the Dulong–Petit limit at
high temperatures (4600 K). Our calculated heat capacity is in
good agreement with the experimental results of Todd [57] at low
temperatures of below 150 K, whereas above this temperature
there is a discrepancy in the calculated and experimental value of
the heat capacity. The probable reason for this discrepancy is that
the material might have strong anharmonicity above this tem-
perature and this behavior increases with increase in temperature.
Because the used quasi-harmonic approximation (QHA) accounts
only partially the effects of anharmonicity, through the volume
dependence of the phonons [58], we could only get the good
agreement between the calculated and experimental heat capacity
at low temperatures (o150 K) rather than at high temperatures
(4150 K). The Debye temperature, the highest temperature that
can be achieved due to a single normal mode, of a solid is a material
dependent parameter that is involved in all physical phenomena
where the lattice vibrations play an important role, such as thermal
conductivity, super conductivity, phonon spectra, melting point
and others. Since the Debye temperature shows strong tempera-
ture dependence, we calculated this dependence up to the tem-
perature range of 1200 K and shown in Fig. 5(c). The calculated
Debye temperature increases with increase in temperature and
shows a large variation from 200 to 1200 K in the high temperature
limit. The calculated vibrational entropy of MgF2 is shown in
Fig. 5(d). As the temperature increases the vibrational contribution
to the entropy increases and therefore the entropy increases with
temperature. It is well known that, as the temperature rises the
contribution of phonons become more and more important and one
can calculate the free energy F¼U�TS, where U the vibrational
internal energy given in Eq. (5) contains the static energy and the
phonon contribution and S is the entropy which is entirely due to
phonons and it is shown in Fig. 5(e). The calculated free energy
(F¼U�TS) of MgF2 decreases with the increase in temperature.
This behavior is due to the fact that both vibrational internal energy
U and entropy S increases with temperature and this leads to the
decrease in free energy. From the study of free energy we conclude
that the system is thermodynamically stable below 1200 K.
4.4. Optical properties

Now we try to shed more light on the optical properties using
the calculated scissor operator corrected band structure. The fine
structure of the energy distribution of the electron states in the
valence and conduction bands can be obtained by the knowledge of
the optical functions. The interband optical functions are calculated
by using the expressions as stated in Section 3.2. For the calculation
we have taken the electric field vector as an average over the plane
perpendicular to the polarization direction of [100]. The absorptive
part e2ðoÞ and the dispersive part e1ðoÞ of the complex dielectric
function eðoÞ as a function of the photon energy are shown in
Figs. 6(a) and (b) respectively, where the dotted lines represent the
experimental data. The assignments of the critical peaks in the
optical spectra of e2ðoÞ in Fig. 6(a) are as follows. Peak A at 10.89 eV
originates from the transition F 2p (at �0.04 eV) - Mg 3s (at
10.85 eV) at G�point. The peak B at 12.53 eV arises from the
transition F 2p (at �1.68 eV)-Mg 3s (at 10.85 eV) atG�point. The
peak C at 13.77 eV is due to the transition F 2p (at �0.50 eV) - Mg
3s (at 13.27 eV) at X-point. The peak D at 15.37 eV probably arises
from the transition F 2p (at �0.57 eV) - Mg 3s (at 14.80 eV) at M-
point. Peak E at 16.84 eV is due to the transition F 2p (at �0.31 eV)



Fig. 5. Thermodynamic properties of MgF2 calculated within LDA at the theoretical equilibrium volume.
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- Mg 3s (at 16.53 eV) at A-point. The highest peak, F, at 22.01 eV
may be due to the transition F 2p (at �3.35 eV) - Mg 3s (at
18.66 eV) at Z-point. It should be note that all the optical transitions
are mainly from F ‘p’ states to the ‘s’ states of Mg, this is because F 2p

states dominate up to �5 eV in the valence band and Mg 3s states
are dominate up to 22 eV in the conduction band. Our calculated
e2ðoÞ is in good agreement with the experimental result of William
et al. [18] where the peaks A (11.75 eV), B (13.23 eV), C (14.30 eV),
D (15.32eV), E (17.20 eV) and F (20.93 eV) observed respectively.
The e1ðoÞ is also in good agreement with the experimental data
[18]. A good measure of the consistency of our calculations can be
inferred from the fact that the calculated e1ð0Þ is 1.79 is in good
comparison with the experimental value of 1.90 [18]. The calcu-
lated refractive index nðoÞ is shown in Fig 6(c) along with the
experimental data [18]. The static refractive index n(0) is found to
have the value of 1.33 which is in good agreement with the
experimental value of 1.38 [18] and 1.36 [59]. The refractive index
reaches a maximum value of 1.61 at 9.8 eV, whereas the experi-
mental value is 2.24 at 11.55 eV. We should note here that the
experimental first peak in all the observed optical spectra is more
intense compared to the theoretical peak. The discrepancy may be
due to the inadequacy of the exchange-correlation functionals in
DFT as regards in reproducing the experimental results.
The reflectivity RðoÞ of MgF2 is shown in Fig. 6(d). By carefully
analyzing the reflection spectrum we propose that MgF2 has the
potential to be used as anti-reflection coating material in the energy
range of nearly up to 3 eV i.e., in the mid visible region and it is a good
reflecting material for the vacuum ultraviolet radiation as the
spectrum shows large peak around 26 eV which is also in consistent
with the experimental peak around 25 eV. The energy-loss function
which is the imaginary part of the reciprocal of the complex dielectric
function is also obtained and shown in Fig. 6(e). It is an important
optical parameter, indicating the energy loss of a fast electron
traversing in the material. The peaks represent the characteristic
behaviors associated with the plasma oscillations and the correspond-
ing frequencies are the so-called plasma frequencies. The peaks of
LðoÞ correspond to the trailing edges in the reflection spectra and is
observed at around 26 eV corresponding to the abrupt reduction of
RðoÞ. This is in good agreement with the experimentally reported
value of 24.5 eV [18].



Fig. 6. Optical properties of MgF2 calculated within LDA at theoretical equilibrium volume (the e2ðoÞ corresponds to the scissor shift of 3.97 eV).
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5. Conclusions

Full structural optimization of the rutile type MgF2 has been
carried out to obtain the equilibrium structural properties like cell
constants, atomic position and bulk modulus of the system which
are in close agreement with the experimental results. The calcula-
tions show that MgF2 has a direct band gap of 6.83 eV in LDA and
6.88 eV in GGA with a scissors operator correction of 3.97 eV in LDA
and 3.92 eV in GGA to compare with the experimental band gap of
10.8 eV. The Mulliken bond population analysis and the charge
density distribution plots indicate that the material is ionic. We
have calculated the elastic properties for single and polycrystalline
MgF2. Our analysis shows that MgF2 is a mechanically stable aniso-
tropic material, the only parameter limiting the mechanical stability is
the shear modulus. In addition, MgF2 is relatively hard material with
less compressibility compared to other alkaline-earth fluorides, which
also exhibits ductile behavior and with a high ionic contribution to
intra-atomic bonding. We have investigated the basic thermody-
namic properties using the quasi-harmonic Debye model and is seen
that the predicted heat capacity Cv is close to the Dulong–Petit limit,
which is common to all solids at high temperatures. The temperature
dependent entropy and free energy of MgF2 show that it is thermo-
dynamically stable below 1200 K. Finally we have calculated the
optical properties of MgF2 and found that they are in good agreement
with experiment and the material can be used as an anti-reflecting
coating material in the energy range of 2–4 eV and also can be used as
reflective coating material in the regime of vacuum ultraviolet region.
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